Algebra - Class 1
Term - can be made up of the following:

- a number
- a letter
- a combination of the above

In algebra, a letter represents an unknown number.
Expression - a group of terms separated by addition (+) or subtraction (-) signs

$$
2 x+3 y
$$

Equation - when an expression/term is equal to another expression/term. These can always be solved.

$$
2 x+1=9
$$

$3 x \rightarrow$ means 3 multiplied by x or 3 lots of x $x \rightarrow$
can be seen as 1 x or 1 lot of x $x^{2} \longrightarrow$ means x multiplied by x
means x divided by 3

Algebra - Class 1
When a term has the same letter/ combination of letters we can collect them. Letters that are different cannot be collected. This is known as collecting like terms or simplifying.

Examples:

$$
\left.\begin{array}{l}
3 x+2 x \rightarrow 5 x \\
x+9 x \rightarrow 10 x \\
x+3 y \rightarrow \text { cant be } \\
\text { collected }
\end{array}\right] \begin{aligned}
& 5 x-3 x+11 x \rightarrow 13 x \\
& 4 x+2 y+3 x \rightarrow 7 x+2 y
\end{aligned}
$$

Questions

$$
\begin{aligned}
& 3 x+4 y-x+2 y \\
& 4 x y+3 x-2 y+6 x y-y \\
& 3 x^{2}-2 x^{2} y+4 x y^{2}-x^{2} y^{2}
\end{aligned}
$$ thetermoutside Examples:

$$
\begin{aligned}
& 3(x+2) \rightarrow 3 x+6 \\
& 5(2 x-1) \rightarrow 10 x-5 \\
& x(x+1) \rightarrow x^{2}+x \\
& 4 x(2 x+1) \rightarrow 8 x^{2}+4 x \\
& 7(x+3 y) \rightarrow 7 x+2 / y
\end{aligned}
$$

Questions

$$
2(a+d)
$$

$$
5 x(3 x-2 y)
$$

$$
4(x+3)+7(4-2 x)
$$

Algebra - Class 1
To expand a double bracket in algebra you need to multiply every possible combination of terms. You can do this through a method called FOIL:

First - multiply the first term in each bracket Outside - multiply the outside terms (shown below) Inside - multiply the inside terms (shown below) Last - multiply the last term in each bracket

Example:

Questions

$$
(x+4)(x+6)
$$

$$
(3 x+2)(2 x-7)
$$

We need to follow certain rules when it comes to multiplying
and dividing terms in algebra. These are known as the rules indices:

$$
x^{3} \times x^{2}=x^{3+2}=x^{5}
$$

$$
x^{6} \div x^{4}=x^{6-4}=x^{2}
$$

$$
\left(x^{4}\right)^{2}=x^{4 \times 2}=x^{8}
$$

Question

$$
\begin{aligned}
& 2 m \times 3 \\
& n^{3} \times n^{5} \\
& \left(x^{3}\right)^{5} \\
& \frac{c^{3} d^{4}}{c^{2} d}
\end{aligned}
$$

